Big Data

A volume and a variety of available data is constantly growing. An information became the most valuable asset nowadays.

Does your company make the most of the data available?

Technologies of managing big quantities of data are now commonly used not only by big companies such as Amazon, Google and Microsoft but also in industry, banking, insurance.

Only this year we have participated in many different Big Data projects. Thanks to the gained experience, we are able to support all types of businesses in their path of growth and change towards modern solutions of BI that enable to predict the business trends and help to make appropriate decisions.


Big Data

Big Data Engineer

Our fully qualified Big Data Engineers are particularly skilled in data collection and data analysis. The focus is put on integration of incoherent data, development of Big Data solutions and monitoring results.

Apart from the experience in software engineering our experts are fully skilled in data warehousing, data quality, data cleansing, data governance, ETL development, environments integration, Cloud Computing services.

Big Data

Big Data Scientist

All our Big Data Scientists have the deep knowledge of applied mathematics, statistics and IT with a distinct skill of understanding business logics.
They work on developing algorithms of machine learning and artificial intelligence on a daily basis. Their objective is to discover a logic of business phenomenon by analyzing and integrating vast volumes of data of different kinds in order to finally present it in form of the algorithm that enables control of the process.

Big Data

Big Data Architect

Our Big Data Architects are able to consult, guide, design and implement Big Data solutions, integrating them perfectly with all company’s environments. Among their competencies there are architectural design, system installation, pipeline design supporting Hadoop data lake in order to feed data analytics structure that are successively used by Data Scientist for artificial intelligence purposes. Our Big Data Architects can support you also in aligning your action plans with norms and standards as well as defining best practices for business continuity and security rules. They are able to run the project team too.

Big Data Administrator

Big Data Administrator

Big Data Administrators who work for us have a deep knowledge of operative environments being able to install and administer all Big Data components on-premise and in Cloud. All activities are performed according to DevOps culture, using best practices such as Infrastructure as Code. The vendor-agnostic characteristics give them opportunity to manage different appliance available on a market (Apache, Cloudera, Hortonworks, MapR, Oracle). They manage an integration between organization’s tools (or third party’s tools) and Big Data solutions chosen.



Piattaforma open-source nata e sviluppata da big internet player quali Google, Yahoo, Linked-In etc per la gestione ed elaborazione di Big Data.
Grazie alla sua scalabilità, resilienza e affidabilità può gestire enormi moli di dati, strutturati e non, supportando i processi di tipo ETL tradizionale e il trattamento in streaming di flussi di dati continui ed infiniti. E’ la piattaforma di riferimento per lo sviluppo di modelli di Intelligenza Artificiale e Deep Learning.


I motori NoSQL nascono con l’intento di colmare specifiche lacune caratteristiche di Hadoop: esso si rivela in effetti formidabile per il trattamento di enormi moli di dati, ma può rivelarsi poco efficace per la ricerca puntuale di specifici frammenti all’interno di un DataLake.
Esistono varie tecnologie NoSQL con caratteristiche peculiari differenti come HBase, Cassandra, MongoDB, per adattarsi a specifiche esigenze progettuali.


Tecnologia emergente che consente scalabilità, resilienza e velocità nella gestione in streaming di flussi infiniti di informazioni, che devono essere processati senza soluzione di continuità e generalmente in enormi quantità.
In questa categoria ricadono solitamente i dati provenienti da sistemi transazionali, da dispositivi IoT e da sensoristica di vario genere.
Questa tecnologia è utile anche allo scopo di ridurre la latenza tra la generazione di un evento e la sua elaborazione/visualizzazione, mettendo a disposizione degli stakeholder i dati in real time.


Spark e Flink

I volumi di dati che Hadoop, Kafka ed i NoSQL sono in grado di gestire necessitano motori di elaborazione altrettanto potenti ed efficaci. Spark e Flink consentono di elaborare queste enormi moli di dati anche in real time.
Tali tecnologie permettono agli sviluppatori di utilizzare linguaggi complessi come Java, Scala, Python per la creazione delle applicazioni, supportando in modo ottimale anche la creazione e l’utilizzo di complessi modelli di Machine Learning.


The important experiences gained from 2013 until now enable us to respond to every need in the Big Data field.
The most frequently requested services are:

Infrastructural and architectural assessment

Definition of best practices for technology usage

Design, implementation and management of the infrastructure, in cloud and / or on-premise, Open Source and / or proprietary, in the different options (IaaS, PaaS).

Design, implementation and management of architectural components, integrating them with existing systems

Definition of application standards and data access policies

Support for managers to foster insights aimed at maximizing the benefit of information extracted from data

Implementation of the solutions required by the business through machine learning and artificial intelligence

Implementation of predictive and prescriptive systems to support business results and business processes

Users training for governing the implemented solutions

We offer our services in the project mode that guarantees the achievement of the objectives thanks to a consolidated methodology and effective governance. We support clients who require consulting by providing highly specialized personnel.

Please fill in the form below to request the information that you are interested in.